Analysis of Functionally Graded Magneto-Electro-Elastic Composites Using Hybrid/Mixed Finite Elements and Node-Wise Material Properties
نویسندگان
چکیده
A new class of hybrid/mixed finite elements, denoted “HMFEM-C”, has been developed for modeling magneto-electro-elastic (MEE) materials. These elements are based on assuming independent strain-fields, electric and magnetic fields, and collocating them with the strain-fields, electric and magnetic fields derived from the primal variables (mechanical displacements, electric and magnetic potentials) at some cleverly chosen points inside each element. The newly developed elements show significantly higher accuracy than the primal elements for the electric, magnetic as well as the mechanical variables. HMFEM-C is invariant through the use of the element-fixed local orthogonal base vectors, and is stable since it is not derived from a multi-field variational principle; hence it completely avoids LBB conditions that govern the stability of hybrid/mixed elements. In this paper, node-wise material properties are used in order to better simulate the spatial material grading of the functionally graded materials (FGM). A computer code was developed, validated and used to calculate the three magnetoelectric (ME) voltage coefficients for piezoelectric-piezomagnetic (PE-PM) composites, namely, the out-of-plane, transverse and in-plane ME voltage coefficients. The effects of the piezoelectric phase volume fraction as well as the mechanical boundary conditions and loadings on the ME voltage coefficients are investigated. Also, the effects of grading functions in PE-PM composites with functionally graded layers, as well as single-layered functionally graded magneto-electro-elastic materials, on the three ME voltage coefficients are presented.
منابع مشابه
Three-dimensional Magneto-thermo-elastic Analysis of Functionally Graded Truncated Conical Shells
This work deals with the three-dimensional magneto-thermo-elastic problem of a functionally graded truncated conical shell under non-uniform internal pressure and subjected to magnetic and thermal fields. The material properties are assumed to obey the power law form that depends on the thickness coordinate of the shell. The formulation of the problem begins with the derivation of fundamental r...
متن کاملBending analysis of magneto-electro-thermo-elastic functionally graded nanobeam based on first order shear deformation theory
In this research, analysis of nonlocal magneto-electro-thermo-elastic of a functionally graded nanobeamdue to magneto-electro-elastic loads has been done. In order to formulate the problem the Timoshenko theory of beams is utilized. The principle of virtual work, Hamilton’s principle as well as nonlocal magneto-electro-thermo-elastic relations has been recruited to derive the governing eq...
متن کاملOn the Stability of an Electrostatically-Actuated Functionally Graded Magneto-Electro-Elastic Micro-Beams Under Magneto-Electric Conditions
In this paper, the stability of a functionally graded magneto-electro-elastic (FG-MEE) micro-beam under actuation of electrostatic pressure is studied. For this purpose Euler-Bernoulli beam theory and constitutive relations for magneto-electro-elastic (MEE) materials have been used. We have supposed that material properties vary exponentially along the thickness direction of the micro-beam. Gov...
متن کاملOn the Magneto-Thermo-Elastic Behavior of a Functionally Graded Cylindrical Shell with Pyroelectric Layers Featuring Interlaminar Bonding Imperfections Rested in an Elastic Foundation
The behavior of an exponentially graded hybrid cylindrical shell subjected to an axisymmetric thermo-electro-mechanical loading placed in a constant magnetic field is investigated. The hybrid shell is consisted of a functionally graded host layer embedded with pyroelectric layers as sensor and/or actuator that can be imperfectly bonded to the inner and the outer surfaces of a shell. The shell...
متن کاملMixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...
متن کامل